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Abstract 

Advancements in machine learning have paved the way for innovative approaches to 

healthcare, particularly in disease diagnosis. This study focuses on the development of machine 

learning models for disease prediction to enhance the accuracy of patient diagnoses, with the 

ultimate objective of improving healthcare outcomes. These models serve as valuable tools for 

healthcare professionals, aiding in precise and timely assessments. By understanding disease 

distributions and symptom patterns, targeted and accurate machine learning models are created, 

aligning with the increasing adoption of value-based healthcare in the medical field. 

Our models aim to contribute to this industry shift by building, validating and providing 

tools that enhance diagnostic accuracy, leading to better patient outcomes and emphasizing the 

broader objective of value-based healthcare, which prioritizes outcomes and patient satisfaction.  

We perform an extensive exploratory data analysis to understand the dataset and its 

important properties. Various supervised machine learning models are explored, including lasso 

regression, principal component analysis, k-nearest neighbors, support vector machine with 

differing assumptions, and random forest to determine their efficacy in accurately predicting 

disease diagnoses from the given symptom predictors. 

Our research underscores the potential of machine learning models in predicting disease 

diagnoses from symptom indicators. Through extensive experimentation and model evaluation, 

our findings reveal promising results in using machine learning models for disease prediction, 

though with certain caveats detailed in the body and conclusion of our report.  Future research 

directions include exploring more complex model architectures and incorporating additional data 

sources with greater volumes of data to further enhance predictive accuracy and generalizability 

in real-world clinical settings.  These enhancements would be requirements before any modeling 

tactics detailed in this study could be applied in the real world. 

Introduction 

Our main objective is to develop supervised machine learning models capable of 

effectively classifying a specific disease based on their reported symptoms.  Before model 

development, we conducted an in-depth Exploratory Data Analysis (EDA). This analysis aimed 

to understand the distribution of diseases within the dataset and to provide insights into how 

symptoms are distributed among patients.   

It has become increasingly important for medical professionals to deliver value-based 

healthcare to their patients. Data-driven insights and models can be used to help increase the 

accuracy of patient diagnoses, and thereby improve patient outcomes, that will positively impact 

healthcare and medical care. After conducting EDA, the supervised machine learning models 

that we explore include lasso regression, principal component analysis, k-nearest neighbor, 

support vector machine with differing assumptions, linear discriminant analysis, quadratic 

discriminant analysis, naïve bayes, and random forest.  
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Problem Statement and Data Sources: 

The dataset, obtained from Kaggle, features 132 symptoms that a patient did or did not 

experience, as well as a medical prognosis. A patient’s symptoms serve as predictors, with each 

symptom being a binary variable: 1 indicating a patient has the symptom, and 0 indicating a 

patient does not have the symptom. Due to the number of predictors, it is not entirely feasible to 

display a full sample observation in this report. Example predictors include skin rash, itching, 

joint pain, shivering, and chills. In the context of this dataset, the prognosis is a multinomial 

categorical response variable and can be one of 42 diseases. Example diseases include Allergy, 

AIDS, Diabetes, Fungal Infection, Malaria and Chicken Pox. A patient will have one disease and 

any number of symptoms. We mapped each disease/prognosis to a number from 1 to forty-two 

for modeling purposes.  

 

Exploratory Data Analysis (EDA) 

EDA is a crucial first step in data mining as it provides insights into the dataset's 

intricacies, helping us make informed decisions during model development.  

Skewness 

Table 1. Skewness for symptoms. 

In our dataset, each of our predictor variables is a logical 

indicator, the values for which can only be 1 or 0. To 

quantify the observed logical distribution for each 

predictor, we utilize skewness as a statistical metric, 

providing insights into the asymmetry and shape of the 

binary variable distributions. Multiple predictors having 

the same skewness may have a consistent pattern in the 

spread, suggesting a uniformity in the distribution of 

binary values and potential similarities in their impact on 

the predictive model. A subset of 10 predictors/symptoms 

is shown in Table 1. 

  

https://www.kaggle.com/datasets/kaushil268/disease-prediction-using-machine-learning?select=Training.csv.
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Correlation 

 In our dataset with 132 predictors, 

displaying the correlations among all 

variables would be impractical. Therefore, 

we've filtered to showcase only the highest 

absolute correlations. The correlation 

coefficient 'r' serves as a metric to gauge 

the strength and direction of associations in 

the dataset, and it is crucial in assessing 

potential linear relationships between 

continuous variables. The correlation plot 

visually represents how closely two 

variables co-vary, with +1 indicating a 

perfect positive correlation, 0 representing 

no correlation, and -1 representing a perfect 

negative correlation. For instance, throat irritation and redness of eyes are highly positively 

correlated and so are sinus pressure and a runny nose. Figure 1 shows there are no strong 

negative correlations in our data set.  

Data Cleaning 

Perfectly Correlated Variable & Multicollinearity 

 As described above, a perfectly correlated variable is one where the relationship between 

it and another variable is characterized by a correlation coefficient of 1. This indicates a precise 

linear association, where one variable can be expressed as a constant multiple of the other, 

leading to a redundancy of information between the two variables. Perfectly correlated variables 

in machine learning modeling can be problematic because they introduce multicollinearity, 

making it challenging for models to distinguish the individual impact of each variable. This can 

lead to unstable model coefficients, reduced interpretability, and potential performance issues, as 

the model may struggle to generalize well to new, unseen data. Thus, we only kept one of the 

variables for each set of perfectly correlated variables. 

The following sets were perfectly correlated: 

• Throat irritation, redness of eyes, sinus pressure, runny nose, congestion, loss of smell 

o These symptoms are often correlated because they commonly result from shared 

causes such as respiratory infections, allergic reactions, or specific health 

conditions, indicating a systemic response to external factors affecting the 

respiratory and immune systems. 

• Brittle nails, swollen extremities, enlarged thyroid 

o These symptoms are correlated as they can collectively indicate an underlying 

health condition, such as hypothyroidism, where a dysfunctional thyroid gland 

affects both nail and tissue health, resulting in characteristic manifestations. 
  

Figure 1: Correlation plot of symptoms. 
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Linearly Dependent Variables 

 We also removed linearly dependent variables; predictors that are linearly dependent on 

other variables contribute redundant information in a dataset, leading to multicollinearity issues 

in linear regression models and making it difficult for the model to estimate unique coefficients 

for each predictor, potentially impacting the model's stability and interpretability 

The symptoms that are linearly dependent on other variables are the following: polyuria, 

receiving unsterile injections, stomach bleeding, palpitations. These symptoms could be linearly 

dependent if they are associated with a common underlying condition, such as diabetes or 

complications from unsterile injections, suggesting a proportional relationship in their 

occurrence. 

Variance Inflation Factor (VIF) 

 We used VIF to address further issues with multicollinearity. VIF in machine learning 

quantifies the extent of multicollinearity among predictor variables, with high VIF values 

indicating inflated variance in regression coefficients due to strong correlations between 

predictors. Any variables with a VIF value over 10 were removed. 

Proposed Methodologies 

Based on our dataset, we are focused on determining the most predictive symptoms for 

accurate disease classification utilizing supervised machine learning models. Ultimately, we 

would like to explain the variability in the response by leveraging mathematical combinations of 

the predictors. To achieve this goal, we plan to utilize a range of data mining and statistical 

learning methods. 

Because we are working with a large dataset of 132 independent variables, the below 

listed methodologies were used for our model prediction. 

Principal Component Analysis (PCA) 

PCA is a technique in machine learning that reduces the dimensions of data, transforming 

it into a simpler representation. It highlights key patterns and captures the most important 

variance by identifying independent principal components. 

Cross Validation 

5-fold cross-validation with 3 repeats involves splitting the dataset into 5 subsets, 

iteratively using 4 for training and 1 for validation; this process is repeated 3 times, providing a 

more robust evaluation of a model's performance by assessing it across different combinations of 

training and validation sets. 
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KNN 

KNN (k-Nearest Neighbors) is a machine learning algorithm that classifies based on the 

majority class of the k-nearest data points in the feature space, making decisions locally by 

considering the closest neighbors in the dataset. 

Random Forest 

Random Forest is an ensemble learning algorithm that constructs multiple decision trees 

during training and outputs the mode (classification) of the individual trees, providing robust and 

accurate predictions while mitigating overfitting. 

LASSO Regression 

Lasso regression, a powerful machine learning technique for feature selection, introduces 

a penalty term (lambda, denoted as λ) to encourage the model to reduce less relevant feature 

coefficients to zero.  This prevents overfitting by excluding irrelevant features. Lasso regression 

stands out for feature selection, contributing to accurate machine learning models. Balancing 

high accuracy with guarding against overfitting is crucial for its successful real-world 

application. 

Support Vector Machine 

A Support Vector Machine (SVM) is a supervised machine learning algorithm used for 

classification and regression tasks. It works by finding the optimal hyperplane that best separates 

different classes in the feature space, maximizing the margin between data points of different 

classes. 

Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a classification technique that seeks linear combinations 

of features to maximize the separation between classes while minimizing within-class variance. 

It accomplishes this by projecting the data onto a lower-dimensional space defined by 

discriminant functions, making it an effective method for distinguishing between multiple 

classes. 

Quadratic Discriminant Analysis (QDA) 

QDA is a variant of LDA that allows for different covariance matrices for each class, 

providing greater flexibility in capturing the shape of class boundaries. QDA models the 

distribution of each class using quadratic decision boundaries, accommodating scenarios where 

classes have distinct variances. 

Naïve Bayes 

Naïve Bayes is a probabilistic classification algorithm based on Bayes' theorem. It 

assumes feature independence within classes, meaning that the presence or absence of a 

particular feature does not influence the presence of other features. Despite its simplistic 
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assumption, Naïve Bayes is computationally efficient and often performs well in practice, 

particularly in situations where feature independence is a reasonable approximation. 

Analysis and Results  

Table 2. Summary of modeling testing error.  

Model Testing Error Testing Error PCA 

Lasso Regression 0 NA 

K Nearest Neighbor 0.046 0.131 

LDA 0.051 0.049 

Naïve Bayes 0.087 NA 

Random Forest 0.039 NA 

Support Vector Machine 

(Gaussian "radial”) 

0.041 0.931 

Support Vector Machine 

(Polynomial) 

0.051 0.931 

Support Vector Machine 

(Linear SVM) 

0.039 0.921 

Support Vector Machine 

(Gaussian-kernel SVM) 

0.041 0.932 

 

Principal Component Analysis                                             

Principal Component Analysis was utilized post data 

cleaning, which reduced our predictors from 132 to 48. The 

chart to the right represents the cumulative proportion of 

variance explained per added principal component. 24 

principal components were kept of the 48 that were created 

since retaining only the principal components that explain a 

significant proportion of the variance helps in avoiding 

overfitting. This was enough to explain 91% of the variance 

in the data. Note that principal components 25-48 

contributed 1% or less of the variance in the data each.  

 

 

The first principal component represented 8% 

of the data. The chart to the right showcases the 

variables that contributed the most to the first PCA. 

The first Principal Component is like the biggest 

piece in the puzzle, representing the main pattern. 

Understanding which variables of the data contribute 

a lot to this big piece helps to figure out the most 

Figure 2: Cumulative proportion of variance   
explained per added principal component 

Figure 3: Bar chart of symptoms representing the 
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important factors influencing the overall picture. Thus, chills, high fever and fatigue contribute 

the most to the variation in the data. The variation in a dataset is crucial as it encapsulates the 

diversity of values, enabling pattern recognition, informing decision-making, and influencing the 

accuracy of models and analyses.  

Lasso Regression 

In our analysis, cross-validation identified an optimal lambda of 0 among 100 lambdas, 

suggesting no penalty on feature coefficients. A lambda of 0 implies a model without 

regularization, akin to standard linear regression. While this closely fits the 80% training and 

20% test split, caution is needed to avoid overfitting, especially with noisy datasets or high 

feature-to-observation ratios. Different features were selected for each classification in a 

multinomial dataset, highlighting the risk of overfitting. 

The test error was 0, resulting in 100% accuracy. This could stem from minimal 

differences in true features within a prognosis class and an abundance of features per class with 

little overlap, making classification easier. On a new, unseen dataset, the model will most likely 

overfit with numerous features, emphasizing the importance of feature selection. Future steps 

involve evaluating patient populations and demographics, particularly focusing on classes with 

more observations for improved model generalizability. Given the potential overfitting risks 

associated with Lasso regression and a lambda of 0, exploring alternative regularization 

techniques, such as Ridge regression, is worthwhile. Ridge applies a different penalty on 

coefficients, providing a balance between model complexity and generalization. 

K-Nearest Neighbor (KNN) 

For KNN, we utilized the Jaccard distance, measuring the dissimilarity between two sets 

by comparing the size of their intersection to the size of their union. In KNN, using Jaccard 

distance as a similarity metric allows the algorithm to focus on the similarity of the set elements, 

which can be particularly relevant when dealing with categorical features or instances where the 

presence or absence of items matters more than their numeric values. Implementing the Jaccard 

distance for k-nearest neighbors (KNN) can be useful in scenarios where the data consists of sets 

or binary attributes. 
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 We utilized the KNN with the Jaccard 

distance on 24 principal components with 5 fold cross 

validation. The chart to the right showcases that k = 3 

is the optimal model when using root mean square 

error (RMSE) as the key performance indicator 

(KPI). Since we can see that as k gets smaller, RMSE 

is also lower, there may be problems with the dataset. 

A small k can be problematic as it introduces high 

sensitivity to noise and outliers, making the model 

prone to overfitting and leading to less robust 

predictions.  

The testing error for KNN with PCA is higher than KNN without PCA. This suggests that 

PCA may not have been advantageous for the specific dataset or problem. Potential reasons for 

this outcome include information loss during dimensionality reduction, inappropriate selection of 

the number of principal components, and PCA's assumption of linear relationships not aligning 

well with the underlying data patterns. PCA's assumption of linear relationships may not perform 

well on binary predictors as the limited variability, discrete nature, and potential nonlinear 

associations of binary variables may hinder the effectiveness of PCA in capturing essential 

patterns. Additionally, the curse of dimensionality and the sensitivity of KNN to local data 

density might play a role. It highlights the importance of carefully assessing the characteristics of 

the dataset, considering the limitations of PCA, and potentially exploring alternative 

dimensionality reduction methods or hyperparameter tuning to enhance model performance. 

Random Forest 

The next model we tested was random forest, which was tied with support vector 

machine (SVM) for our best performing model.  To find the best model, we iterated through 

different parameters including the number of trees and the depth of each to find the random 

forest that performed the best against testing data.  The optimal number of variables to sample at 

each split was 6, and the best number of trees was 300.  

In addition, we looked at the importance of each feature in the random forest which can 

be seen in the Figure 5 below.  

 

 

 

 

 

 

 

Figure 4: Elbow char for KNN using RMSE. 
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Figure 5: Importance of features in random forest. 

  

Importance examines how much each feature changes accuracy within the resultant 

leaves of the tree.  As can be seen above, there are a few features that contribute much more to 

these calculations than others.  We fitted a model with only the five most important features to 

compare to the full model, and it performed similarly.  Because it is a simpler model with similar 

performance, we chose this reduced model as the final random forest model. 

Overall, this model showed many of the same issues that we found with the other models.  

Specifically, it produced a testing error of 3.9% which is unrealistically low.  Such a low testing 

error rate raises concerns of very high overfitting which would need to be addressed before 

deploying this model in any way.   

Support Vector Machine 

qof the fitted support vector machine models, the linear support vector machine with the 

"vanilladot” kernel yielded the lowest testing error. A linear SVM uses a linear decision 

boundary, often referred to as a hyperplane, to separate different classes in the feature space. The 

linear SVM might have performed best among the kernels tried for several reasons. The classes 

in our dataset are well-separated by a linear boundary, so a linear kernel may excel in finding a 

hyperplane that effectively separates the classes. Additionally, a simpler linear model may 

generalize better and avoid overfitting, especially considering the high dimensionality of the 

feature space. 

We observed the testing errors with PCA showed drastically high testing errors. It could 

indicate that reducing the number of features using PCA didn't help the SVM perform better. 

PCA might have removed important information needed for accurate predictions. In this case, 
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keeping all the original features helped the SVM see and understand the picture better, resulting 

in more accurate predictions. 

LDA, Naïve Bayes, and QDA 

When fitting QDA, the "rank deficiency in group 1" error occurred. This error typically 

indicates an issue with the covariance matrix estimation which can occur when there is a lack of 

variability in one of the classes, causing the covariance matrix to be singular or nearly singular. A 

similar problem was observed when fitting a lasso regression. 

In our dataset, the superior performance of Linear Discriminant Analysis (LDA) 

compared to Naive Bayes suggests that the assumption of equal covariances across classes, a 

critical assumption in LDA, aligns well with the underlying data distribution. This alignment 

likely contributes to more accurate classification, as LDA effectively models the relationship 

between features and classes based on the specific characteristics of our dataset. 

Furthermore, the observation that LDA provides results while Quadratic Discriminant 

Analysis (QDA) throws an error in our results may indicate challenges in our dataset. QDA is 

more sensitive to data irregularities, especially in situations with a limited sample size or highly 

correlated features, potentially resulting in issues such as rank deficiency in covariance matrices. 

The resilience of LDA to these challenges makes it a dependable choice when the assumptions of 

equal covariances and sample size limitations align with the unique features of our dataset. 

Conclusion 

Overall, each of the models built on this data performs at an incredibly high rate with the 

worst testing error being only 15% and with most models being around 5%.  These values raise 

concerns of further correlated terms within the data, specifically that a predictor is very highly 

correlated with the dependent variable that we are trying to predict and there is limited variability 

within classes in our dataset.  Although we employed multiple different methods—PCA, Lasso, 

etc.—to attempt to address this concern, the performance of the models is still seemingly, 

unrealistically good.  Before moving forward with any of these models, more work would need 

to be done to understand the relationships in the data and why the models are performing so well. 

Based on our results and errors when fitting some of the models or attempting cross validating, it 

is most likely because there is a lack of variability in our classes causing the covariance matrix to 

be singular or nearly singular. 

The data set with which we worked was relatively small, and a larger data set could help 

to alleviate some of these issues. This would allow us to expose our models to a larger variety of 

symptomologies and resultant diagnoses and would make it easier to trust the results of our 

models.  In a real-life situation, symptoms and diagnoses of patients could be logged as they 

came to the healthcare facility and then used to continue training and testing the model.   

Our analysis shows that machine learning models can help predict diseases using 

symptoms, which can be used to improve patient outcomes. These models serve as valuable tools 

for healthcare professionals, aiding in precise and timely assessments. By understanding disease 

distributions and symptom patterns, targeted and accurate machine learning models can be 
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created. In the future, we plan to explore more advanced models and include more data to make 

the predictions even more accurate in real-world situations. Before using the methods, we 

discuss in real life, we need to make improvements such as broadening the dataset. 

Lessons Learned - Project 

 One lesson learned is that reducing the number of predictors was helpful. Our original 

132 predictors added a lot of noise and issues with multicollinearity to our data and 

models.  There was no reduction in predictive power after removing the majority of 

predictors.  When applying our methodologies to real patients, care would need to be taken to 

ensure that a critical symptom is not removed in that particular setting, but in the scope of our 

analysis, reducing the number of predictors was very beneficial. 

PCA's performance can vary across different machine learning algorithms due to their 

underlying assumptions and sensitivity to different data structures. Because PCA performed 

poorly on SVM but well on KNN and exceptionally on Linear Discriminant Analysis (LDA), it 

may be because SVM relies heavily on capturing complex decision boundaries, and the linear 

transformations introduced by PCA might not effectively represent these non-linear structures. In 

contrast, KNN is more flexible and adaptable to local patterns, benefiting from dimensionality 

reduction without losing critical information. LDA, being a supervised method, may exploit the 

class information present in the data, aligning well with PCA's linear transformations and leading 

to superior performance.  

We would select the random forest model based on the reduced 48 predictor data set as 

our final recommendation, but that recommendation would come with some concerns, as 

mentioned above.  This was the best performing model, but the testing error is unrealistically 

low.  We would not recommend this model be deployed in an actual healthcare setting until it 

had been exposed to much more data and refined.  In a setting such as healthcare, incorrect 

diagnoses are far too detrimental to deploy a model that does not command very high 

confidence.  

Lessons Learned - Course 

 Overall, this course was a fantastic overview of a large number of machine learning and 

data mining methodologies.  The format of the class exposed us to many different ways of 

working with data, and the homework assignments were helpful in allowing us to be creative and 

to apply the concepts to real-world data. Additionally, peer assessments provided a great 

opportunity to receive feedback and further build our skill sets. It was beneficial to observe 

others' approaches and learn from them. 

 For future iterations of this course, it would be very helpful to see examples with code of 

expanding models to multinomial situations. For example, the code for logistic regression only 

demonstrated a binomial dependent variable. Although we understand that these simple examples 

are best for learning, it would be nice to have available more information on more complex 

implementations.  Additionally, there were times that points were deducted from homework 
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assignments and projects for not using a concept, but that concept had never been covered or 

prescribed in class—t-test and Wald tests for selecting model. 

 


